Multiscale RBF collocation for solving PDEs on spheres

نویسندگان

  • Quoc Thong Le Gia
  • Ian H. Sloan
  • Holger Wendland
چکیده

In this paper, we discuss multiscale radial basis function collocation methods for solving certain elliptic partial differential equations on the unit sphere. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. Two variants of the collocation method are considered (sometimes called symmetric and unsymmetric, although here both are symmetric). A convergence theory is given, which builds on recent theoretical advances for multiscale approximation using compactly supported radial basis functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A collocation method based on one-dimensional RBF interpolation scheme for solving PDEs

Purpose – To present a new collocation method for numerically solving partial differential equations (PDEs) in rectangular domains. Design/methodology/approach – The proposed method is based on a Cartesian grid and a one-dimensional integrated-radial-basis-function (1D-IRBF) scheme. The employment of integration to construct the RBF approximations representing the field variables facilitates a ...

متن کامل

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations

This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...

متن کامل

RBF Multiscale Collocation for Second Order Elliptic Boundary Value Problems

In this talk, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. On each level, standard symmetric collocation is employed. A convergence t...

متن کامل

Approximate solution of the fuzzy fractional Bagley-Torvik equation by the RBF collocation method

In this paper, we propose the spectral collocation method based on radial basis functions to solve the fractional Bagley-Torvik equation under uncertainty, in the fuzzy Caputo's H-differentiability sense with order ($1< nu < 2$). We define the fuzzy Caputo's H-differentiability sense with order $nu$ ($1< nu < 2$), and employ the collocation RBF method for upper and lower approximate solutions. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2012